The performance of the Deep Learning (DL) models depends on the quality of labels. In some areas, the involvement of human annotators may lead to noise in the data. When these corrupted labels are blindly regarded as the ground truth (GT), DL models suffer from performance deficiency. This paper presents a method that aims to learn a confident model in the presence of noisy labels. This is done in conjunction with estimating the uncertainty of multiple annotators. We robustly estimate the predictions given only the noisy labels by adding entropy or information-based regularizer to the classifier network. We conduct our experiments on a noisy version of MNIST, CIFAR-10, and FMNIST datasets. Our empirical results demonstrate the robustness of our method as it outperforms or performs comparably to other state-of-the-art (SOTA) methods. In addition, we evaluated the proposed method on the curated dataset, where the noise type and level of various annotators depend on the input image style. We show that our approach performs well and is adept at learning annotators' confusion. Moreover, we demonstrate how our model is more confident in predicting GT than other baselines. Finally, we assess our approach for segmentation problem and showcase its effectiveness with experiments.
translated by 谷歌翻译
钢筋学习最近在许多组合优化问题中显示了学习质量解决方案的承诺。特别地,基于注意的编码器 - 解码器模型在各种路由问题上显示出高效率,包括旅行推销员问题(TSP)。不幸的是,它们对具有无人机(TSP-D)的TSP表现不佳,需要在协调中路由车辆的异构队列 - 卡车和无人机。在TSP-D中,这两个车辆正在串联移动,并且可能需要在用于其他车辆的节点上等待加入。不那么关注的基于关注的解码器无法在车辆之间进行这种协调。我们提出了一种注意力编码器-LSTM解码器混合模型,其中解码器的隐藏状态可以代表所做的动作序列。我们经验证明,这种混合模型可提高基于纯粹的关注的模型,用于解决方案质量和计算效率。我们对MIN-MAX电容车辆路由问题(MMCVRP)的实验还确认混合模型更适合于多车辆的协调路由而不是基于注意的模型。
translated by 谷歌翻译